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With the prevalence and the enormous societal consequence on health of Alzheimer’s disease (AD), diag-
nosis of AD and its prodromal form, mild cognitive impairment (MCI) is essential for patient care, and has
been a research hotspot in recent years. Existing studies have applied machine learning methods to per-
form AD early diagnosis by analyzing various biomarkers. However, the difficulty in extracting the low-
dimensional high-level brain features that accurately reflect main AD-related variations of anatomical
brain structures becomes a bottleneck of the diagnosis performance in most of the existing researches.
To overcome this bottleneck, this paper proposes a novel three-component adversarial network-based
AD detection method (brain slice generative adversarial network for Alzheimer’s disease detection,
BSGAN-ADD) to predict the disease category. BSGAN-ADD combines generative adversarial network
(GAN)-based brain slice image enhancement and deep convolutional neural network (CNN)-based AD
detection. In BSGAN-ADD, under the restriction of the discriminator, the generator learns to integrate
the disease category feedbacks from classifier into 2D-brain slice image reconstruction process for image
enhancement in the training phase. In the prediction phase, the stacked CNN layers in the generator are
used to extract high-level brain features from category-enhanced 2D-brain slice images. And the classifier
receives the extracted brain features to output the posterior probabilities of diseased states (Normal, AD
and MCI). Experimental results on two real-world datasets (Alzheimer’s disease neuroimaging initiative,
ANDI, Open Access Series of Imaging Studies OASIS) demonstrate that the new feature extraction process
used in BSGAN-ADD can extract more representative high-level brain features to achieve a significant
diagnosis performance gain compared with several typical methods.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction suffer incontinence and lose their autonomous behavior capacity.
The Alzheimer’s disease (AD), a neurological, progressive and
irreversible brain disorder disease, which is the most common case
of dementia mostly occurring in the late life and causes the death
of nerve cells, thus affecting memory and thinking skills [1]. As a
result of the increasing age of societies, the number of confirmed
AD patients is expected to rise dramatically. And the worldwide
prevalence of AD will double for the next 20 years, so that 1.2%
of the global population will have the AD by 2046 [2].

Generally, the development of AD is divided into different
stages according to deterioration degree of cognitive competence.
In the initial stage, patients show memory impairment, socially
awkward and apathy. Then as disease progresses, they gradually
Ultimately, patients die of complications. It is easy to diagnose
the patients at the end-stage of AD, while the stage of mild to mod-
erate remains difficult to be distinguished. To prolong patients’
lifespan and improve their lives’ quality, the early diagnosis of
AD identifies the high risk of progression, and allows patients to
take preventive measures before irreversible brain damage occurs.
As it has been confirmed that mild cognitive impairment (MCI) has
a high risk of progression to AD [3], early diagnosis of Alzheimer’s
disease that is primarily associated to the detection of AD and MCI,
and plays a significant role in patient care.

Recently, many studies have applied machine learning methods
for computer-aided-diagnosis (CAD) of AD, and the accuracy can be
increased than traditional doctor diagnosis. In these works, the
diagnosis of AD can be modeled to be a multiclass classification
problem [4–6]. But, a bottleneck of the diagnosis performance
was shown in most of the existing researches, mainly due to the
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expressiveness limitations of the chosen learning models. In this
study, we design a novel deep learning-based model to overcome
the bottleneck and aid the diagnosis of AD and its prodromal stage
MCI by detecting the structural magnetic resonance imaging
(sMRI) data of AD’s brains, MCI’s brains and healthy brains.

The two main contributions of this work can be summarized as
follows:

(1) A novel three-component adversarial Alzheimer’s disease
detection (ADD) model (Called brain slice (BS) generative
adversarial network for Alzheimer’s disease detection,
BSGAN-ADD) is proposed for early diagnosis of AD. The pro-
posed ADD model can be regarded as a combination of the
GAN-based brain slice image enhancement model and the
deep convolutional neural network (DCNN)-based ADD
model. In BSGAN-ADD, the pre-processed 2D-brain slice
images (2D-brain feature images) are selected from 3D
structural MRI (sMRI) as input, and the generator, discrimi-
nator and classifier compete in a three-player minimax
game. And the posterior probability of disease category
(Normal, AD, MCI) P cjInputð Þ are outputs of the classifier.

(2) Extensive experiments on two real-world datasets (ANDI,
OASIS) are carried out to verify the effectiveness of the pro-
posed AD detection approach. And the proposed model was
compared with other GAN-based models to indicate the
classification performance. The experimental results demon-
strate that BSGAN-ADD has better prediction performance
than several state-of-the-art AD detection approaches.

2. Related Works

Existing methods can be divided into two categories. One is
clinical methods and another is computer-aided methods.

2.1. Clinical methods

The diagnosis of prodromal Alzheimer’s Disease (AD) remains
difficult on purely clinical grounds [7]. Further, the accuracy of clin-
ical diagnosismay be lower for patientswith prodromal AD, besides
it could be even lower in primary or secondary care settings than in
the specialized AD centers [8]. The investigation by Beach et al. [9]
showed that sensitivity of AD diagnostic ranged from 70.9% to
87.3% and specificity ranged from 44.3% to 70.8%. Sensitivity usu-
ally depends on the specific histopathologic diagnosis criteria used.
Sacuiu et al. [10] made some research about chronic depressive
symptomatology (chrDS). They found the relevance between chrDS
and additional risk factor for conversion to dementia in MCI and
chrDS wasn’t a typical prodromal AD symptomatology. In [11], a
timely diagnosis method was recommended to help early diagnos-
ing prodromal AD. Different from early diagnosis, timely diagnosis
appeals an earlier diagnosis andmedical intervention. It is perceived
that paying attention from the first time of symptomdiscovered can
be helpful in early stage of dementia.

2.2. Computer-aided methods

In recent years, computer-aided methods have shown its
promising results in AD diagnosis. Compared with traditional clin-
ical diagnosis, computer-aided diagnosis needs less time and
depends less on the experience of professional neuralimage doc-
tors meanwhile provides better accuracy. The accuracy of this
computer-based techniques improved with the development of
machine learning.

In the traditional machine learning methods, unsupervised
methods can be used to diagnose Alzheimer’s Disease. Sun et al.
[12] proposed a novel support vector machine (SVM)-based learn-
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ing method integrating spatial-anatomical information for the
classification of Alzheimer’s disease (AD) and received a good clas-
sification performance between Normal and AD. A novel frame-
work for estimating the hyper-connectivity network of brain
functions was proposed by Jie et al. [13]. They extracted three sets
of brain-region specific features from the connectivity hypernet-
works, and used a multi-kernel SVM for classification. It helps dis-
cover disease-related biomarkers for disease diagnosis. To
represent multivariate brain MRI features, Liu, X et al. [14]
imported an unsupervised algorithm (locally linear embedding,
LLE) into their classification. In their experience, classification with
LLE performed better than ordinary classifications. In addition,
supervised approaches are also important traditional machine
learning methods to diagnose Alzheimer’s Disease. Considering a
high-level information inherent in the observations, Zhu et al.
[15] designed a new loss function combined with a group lasso
for joint sparse feature selection in the joint regression and classi-
fication (JRC) problem, and enhanced the performance of the
regression and classification in AD/MCI diagnosis. Huang et al.
[16] proposed a nonlinear supervised sparse regression-based ran-
dom forest (RF) framework to avoid multiple limitations in the cur-
rent models. A soft-split technique was utilized to assign
probabilistic paths to a test sample in RF and the prediction accu-
racy was improved.

SVM, JRC and RF showed its ability in AD/Normal classification,
however the difficulty in obtaining the brain representations that
accurately reflect AD-related variations of anatomical brain struc-
tures becomes a main problem of the AD diagnosis.

Compared with traditional machine learning algorithms, neural
networks can reach a higher accuracy in image recognition region,
therefore many scholars fuse it with AD diagnosis and showed a
promising effect.

Convolutional neural network (CNN) is most commonly used by
researchers. Some studies [4,17–21], to obtain high accuracy under
the circumstance of less labeled training samples, combined sparse
auto-encoders with 3D convolutional neural networks (3D-CNNs),
and performed better than 2D-CNNs on slices in their experiment,
which shows a good potential of 3D approach to capture local 3D
patterns. Cheng et al. [6] constructed a multiple 3D-CNNs and gen-
eric features from imaging data for classification can be automati-
cally learned in their method. Korolev et al. [22] proposed two
different 3D-CNNs architectures for brain MRI classification to
overcome the problem about complex multistep pipelines for
handcrafted feature generation and feature extraction from the
data. Choi and Jin [23] applied a CNN based method to the predic-
tion of cognitive decline, and they showed the strong correlation
between CNN-extracted biomarker and future cognitive decline.
Khvostikov et al. [24] designed a new 3D Inception-based convolu-
tional neural network architecture and this CNNwas demonstrated
better compared with convolutional AlexNet-based network. Feng
et al. [25] applied a spherical CNNs based framework on human
cortex data from ADNI and they showed the potential of spherical
CNNs in human cortex modeling and performing AD diagnosis.
Aderghal et al. [26] fused 2D-CNNs from different direction in each
brain projection, which not working with the whole brain volume,
and the fusion methods showed better performance. Liu et al. [27]
proposed a multi-channel learning framework to perform AD/MCI
classification tasks. Specifically, a new data-driven method was
applied to locate diseaseassociated image areas in the MRIs. And
then, those sub-MRI scans were fed into a multi-channel CNN-
based classifier for joint classification.

Deep convolution network (DNN) or recurrent neural network
(RNN) can be used to extract image features. Cheng and Liu [28]
proposed a combining convolutional and recurrent neural net-
works for PET images, and in their method, RNNwas added to learn
the features of sequential images and modeled the 3D structure of
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medical images for segmentation and classification. Lu et al. [29]
utilized a multi-modal and multiscale deep neural network. Fea-
tures were extracted at coarse-to-fine structural scales in the
multi-scale approach and the problem about loss of discriminative
information like simple approach can be prevented.

In the field of transfer learning, Hon and Khan’s study [30]
showed that pre-trained weights with intelligently picked training
data generalized very well for AD diagnosis even though the archi-
tectures were trained on a different domain.

And in the field of unsupervised learning, Li et al. [31] utilized a
restricted Boltzmann machine (RBM) with dropout technique to
prevent the overfitting by weight co-adaptation. They found a
5.9% improvement of accuracy compared with classical deep
learning methods but the accuracy was still not satisfied.

Summarizing the existing AD detection methods, there are two
main problems: 1) Low accuracy and demanding expertise. Tra-
ditional clinical diagnosis needs time and professional doctors with
abundant neuroimaging experience. Systematic diagnosis process
is not yet complete so the diagnosis accuracy is unsatisfied, which
may leave the disease develop worse due to failure of recognizing
the prodromal. 2) Difficulty in representative brain feature
extraction. Computer-aided diagnosis becomes a prevail nowa-
days, owing to its fast and accurate diagnosis. The deep learning-
based methods showed their great performance in this domain,
however, the difficulty in extracting the high-level brain features
that accurately reflect main AD-related variations of anatomical
brain structures becomes a bottleneck of the diagnosis perfor-
mance in these researches. Some researchers utilized Autoencoder
(AE)-pre-trained CNNs to performs the transfer learning by auto-
matically extracting discriminative AD features through an unsu-
pervised learning way [18,19,6]. Unfortunately, the
improvements of performance are limited mainly due to the
back-propagation process of reconstruction loss cannot incorpo-
rate disease category information. More importantly, there still
have a low accuracy of three-category classification in AD/MCI/
Normal.

To overcome the above two limitations, the BSGAN-ADD is pro-
posed for early diagnosis of AD, which learns to perform a novel
brain feature extraction process based on an adversarial strategy.
In BSGAN-ADD, different from the autoencoder-based image gen-
eration approach, the disease category feedbacks from classifier,
influences the way of brain slice image reconstruction for generat-
ing brain slice images with more obvious category information.
Then, it uses deep CNNs to extract high-level brain feature from
the category-enhanced images. Such alteration of high-level brain
feature extraction process allows generator can offer more repre-
sentative features that are more helpful for classifier to make more
accurate diagnosis of diseased state.
3. Methods

3.1. Dataset Introduction

The cases in this study were collected at baseline from the Alz-
heimer’s disease neuroimaging initiative (ADNI) database with
tests results and imaging outcomes comprising at least two years
Table 1
Number of samples and images for each class before and after augmentation.

AD

Samples 244
Samples for train 219
Samples for test 25
2D-brain slice images for train 3504
2D-brain slice images for test 400
2D-brain slice images for train after augmentation 17520
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of follow-up. In this work, the efficiency of the proposed Alzhei-
mer’s disease detection model (BSGAN-ADD) was validated on
818 structural MRI (sMRI) samples in Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database. The detail demographic
information is provided in Table 1.

In addition to experimented on ADNI dataset, we also tested
this model on Open Access Series of Imaging Studies (OASIS) data-
set to prove the universality. This dataset contains a cross-sectional
collection of 416 subjects. These subjects are aged from 18 to
96 years. For every subject, 3 or 4 individual T1-weighted MRI
scans are included that were acquired in single scan sessions.
100 out of the 416 subjects that are aged over 60 years have been
diagnosed with Alzheimer’s disease (AD), ranging from very mild
to moderate level.

The proposed model was applied to four specific classification
tasks: three binary ones (Normal vs AD, Normal vs MCI, AD vs
MCI) and one ternary classification (Normal vs AD vs MCI). Classi-
fication performances were evaluated for each task by ten-fold
cross-validation. Pytorch, one of the popular deep learning libraries
in Python, was used to train the proposed Alzheimer’s disease
detection model.

3.2. Data pre-processing

To maximize the accuracy and generality of BSGAN-ADD, a gen-
eral data pre-processing was used to obtain the brain gray matter
(GM) image from sMRI data. The FSL-VBM [32] and ANTsR were
used as pre-processing tools to analyze sMRI data. ANTsR, a high-
dimensional brain mapping library in R language, was used to cap-
ture the GM from sMRI data. FMRIB’s software library (FSL) pro-
vided a viable way to compare the GMs of different samples in
the research group on a voxel-wise basis, and transform them into
a standard space. It is used to eliminate the influence of brain size
of different individuals on the classification model so as to obtain
better classification accuracy and avoid over-fitting. Through pre-
processing, 2D png images are obtained from the sMRI data of nii
format. The size of each image is 3� 32� 32. The images pre-
processed from a sMRI data are shown in Fig. 1.

The 2D-brain feature images were divided into a training set
and a test set. The random sampling method was applied to get
90% of the patient’s brain feature image as training data, while
the rest 10% was for testing. However, with the limited image data
for training a neural network, it was easy to cause problems of
underfitting or overfitting. To enlarge the amount of training data,
data augmentation (DA) was performed in this work. Mirror flip
was the first DA method to apply in processed images. The zero-
mean Gaussian noise with variance of 0.005 was also used to gen-
erate new training images. The final DA method was brightness
change. Image brightness was set from 90% to 110% in steps of
10%. The training dataset contained 58,800 2D-brain feature
images after DA, as shown in Table 1.

3.3. Approach overview

In this section, the proposed brain slice (BS) GAN-based Alzhei-
mer’s disease detection (called BSGAN-ADD) model is introduced.
MCI Normal

303 271
272 244
31 27
4352 3904
496 432
21760 19520



Fig. 1. The 2D-brain feature image.
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BSGAN-ADD is a three-component adversarial detection model,
which aims to perform the diagnosis of AD and its prodromal stage
(Mild Cognitive Impairment, MCI). As shown in Fig. 2, BSGAN-ADD
consists of three main components: 1) the encoder-decoder-
encoder generator component; 2) the discriminator component;
3) and the classifier component.

The functions of these three components are now described.
The generator component, under the constraint of specific brain
slice locations, generates the pseudo 2D-brain feature images
based on the pixel-wise distribution of the input images and the
disease category Normal, AD and MCI. Moreover, the generator
component learns the low-dimensional representations of the gen-
erated brain feature images by stacked CNN layers for obtaining
the AD-related high-level brain features of the input brain feature
images. The discriminator component is responsible for distin-
guishing the real and the pseudo 2D-brain feature images and out-
put discriminant result y0D. The classifier component constructs the
mapping from the extracted high-level brain features output by
the generator component to 3-dimensional posterior probability
y0Cof one of the diseased states Normal, AD or MCI.
356
Next, we describe BSGAN-ADD components from the perspec-
tive of 2D-brain feature image enhancements for Alzheimer’s dis-
ease (AD) detection. The discriminator component requires that
the generator component generates the realistic pseudo images
which have same distribution with the input images. At the same
time, the classifier component influences the generation process
of the pseudo 2D-brain feature image by integrating the disease
category information into the generator component by means of
supervised learning, thereby completing category enhancements
of the input 2D-brain feature images. After that, the classifier com-
ponent gives the disease category posterior probability according
to the high-level brain features extracted from the category-
enhanced brain feature images (the generated brain feature
images).

As shown in Fig. 3, the generator component in BSGAN-ADD has
three parts, an encoder network Encoder1, a decoder network Deco-
der and another encoder network Encoder2. In this work, because
the pixel-wise distributions of 2D-brain slice images (2D-brain fea-
ture images) at different locations of Z axis are not the same, the
brain slice location number of a 2D-brain feature image is coded



Fig. 2. The overall framework of the BSGAN-ADD.

Fig. 3. The structure of the generator component in the BSGAN-ADD. A combination of convolutional layer, batch-norm and leakyReLU is called a basic unit.
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into 3-dimensional slice matrix and fed into Encoder1, Decoder and
Encoder2. This is to map the 2D-brain feature images to low-
dimensional latent feature vectors according to their locations on
the Z axis. For Encoder1 network, the input 2D-brain feature images
(Input) are transformed into the input latent feature vectors
(Latent i) through a learned distribution P Latent ijInput; Sliceð Þ.
And then, Decoder reconstructs the input images from the corre-
sponding Latent i to output the generated 2D-brain feature images
(Generated) based on a learned distribution PðGeneratedj
Latent i; SliceÞ. Finally, Generated are mapped to the output latent
feature vectors (Latent o) through Encoder2. Similar to the tradi-
tional GAN, the discriminator component takes real 2D-brain fea-
ture images and pseudo 2D-brain feature images generated by
the generator component as input simultaneously, and learns for
distinguishing between real and generated images. And the classi-
fier component measures the posterior probability PðcjInputÞ of
diseased categories (Normal, AD, MCI) based on the output latent
feature vectors (Latent o) extracted by generator from the input
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2D-brain feature images (Input). As shown by the dotted line in
Fig. 5, for each of the three components in BSGAN-ADD, the loss
values are used in back propagation process to update its parame-
ters depending on the superposition of losses from itself and the
other two networks, thus constituting a three-component adver-
sarial model. And the parameter update strategy of each compo-
nent will be discussed in detail in Section 3.5.
3.4. BSGAN-ADD pipeline

(1) Generator Component:
Fig. 3 illustrates the structure overview of the generator compo-

nent, which contains two encoder networks and a decoder
network.

Inspired by the deep convolutional GAN (DCGAN) [33], the con-
volutional layer followed by batch-norm and leakyReLU is
regarded as a basic unit (BU) to extract brain image features. Three
kinds of convolutional layers (Strided Conv, Extra Conv and
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ConvTranspose) are used in our model. Strided convolution (SC)
layer is non-pooling strided convolution layer whose shape of the
output is half of the input. Extra convolution (EC) layer applies
image padding to produce a set of feature images that have same
shape as the input. And ConvTranspose (FC) is fractional-strided
convolutional layer to reconstruct the input 2D-brain feature
images (see Fig. 6).

The encoder network Encoder1 takes 3-channel 32� 32 2D-
brain feature images (Input) and 3D-slice info matrix
Fig. 5. The loss value struct

Fig. 4. The structure of the discriminat
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(sLoc � 32� 32-dimensional matrix Slice Info, and 2D-matrix of
the corresponding slice location in Slice Info is filled with one) as
input, and feeds them into two separated SC layers. The outputs
of two SC layers are combined to construct slice info-added MRI
data, so that the generator component can effectively extract the
high-level brain features from 2D-brain feature images based on
different brain slice locations. And then, the encoder network inte-
grates slice info-added MRI data to latent brain features vector
Latent i through several ECs and SC-based BUs.
ure of the BSGAN-ADD.

or component in the BSGAN-ADD..
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Decoder network Decoder adopts the architecture of DCGAN’s
generator, using fractional-strided convolutional layers (FC)-
based BUs with a Tanh layer at the end. Similar to the encoder net-
work, the decoder network also has a slice information integration
module that effectively upscales the Latent i to reconstruct the
input 2D-brain feature image (Input) as the generated 2D-brain
feature images (Generated). Another encoder network Encoder2
extracts the output latent feature vectors (Latent o) from the gen-
erated 2D-brain feature images to represent the input 2D-brain
feature images.

(2) Discriminator Component:
Fig. 4 illustrates the structure overview of the discriminator

component. The feature extraction layers (the intermediate layers)
of the discriminator are similar to the encoder network in the gen-
erator component. The difference is that the discriminator compo-
nent maps the input 3-channel 2D-brain feature image with the
corresponding slice location matrix to a one-dimensional vector,
and uses the Sigmoid function to output the posterior probability
PðrealjInputÞto classify the real 2D-brain feature images and
pseudo 2D-brain feature images.

(3) Classifier Component:
In this work, a DNN-based classifier component is proposed to

generate the posterior probability PðcjInputÞof diseased categories
(Normal, AD, MCI). Specifically, the high-level brain feature vectors
(Latent o) output by the generator component taking 2D-brain fea-
ture images as input, are fed into a DNN to output the 3-
dimensional vector. Each element of the output 3-dimensional vec-
tor represents the possibilities of belonging to Normal, AD andMCI,
respectively.

3.5. BSGAN-ADD training strategy

As shown in Fig. 5, the loss values of each component in BSGAN-
ADD depends on itself and the other two components. Each com-
Fig. 6. The value changes of PPV, SEN and F1 on AD group of testing d
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ponent updates the values of its network parameters by back prop-
agation process of its losses. And all parameters and functions in
loss calculations are shown in Table 2.

(1) Discriminator Component:
In traditional GANs [34], the discriminator network D tries to

distinguish real data from pseudo data generated by the generator
network G. Formally, the discriminator network minimizes the loss
function LD to formulate the objective mentioned above.

LD ¼ �Ex�Pr logD xð Þ½ � � Ez�Pz log 1� D G zð Þð Þð Þ½ � ð1Þ
In this work, inspired by the current trend within the new GAN

training approach [35], the feature matching loss is used for learn-
ing discriminator parameters and to reduce the instability of train-
ing process. Formally, it assumes that f Dis a function that
represents the intermediate layers of the discriminator component
to output the feature representation for a given input image x
drawn from the specific data distribution. The feature matching
calculates the L2distance between the feature representations of
the real input and the generated images. Therefore, the loss func-
tion of the discriminator component in this work is defined as:

LD ¼ Ex�Pr jjf D x; sliceð Þ � f D GðxÞ; sliceð Þjj2 ð2Þ
The parameter update strategy of the discriminator component

is given as:

ParamD  �OLD; ð3Þ
where O denotes the gradient values of the LDto the corresponding
parameters (such as the weights and biases of the convolution lay-
ers in the discriminator network).

(2) Generator Component:
To optimize the generator component, the following four losses

are combined.
Adversarial Loss. Similar to the traditional GAN model, the bin-

ary cross entropy (BCE) function is used for generator-
ata when the proportion of training data varied from 55% to 90%.



Table 2
Description of parameters and functions.

Name Description Name Description

ParamD Parameters of discriminator network y0C outputs of the classifier component
ParamG Parameters of generator network yC the true category labels of samples
ParamC Parameters of classifier network M the number of classes of samples
Pr the specific data distribution y0D the discriminator output vector
slice the slice locations of 2D-brain feature images yD the label filled with 1
LD total loss of DiscriminatorðÞ n the number of dimensions of y0Dand yD
LG total loss of GeneratorðÞ LD bce adversarial loss
LC total loss of ClassifierðÞ LG l1 reconstruction loss
DðÞ the discriminator function LG l2 encoder loss
GðÞ the generator function LC ce classification loss
CðÞ the classifier function LC l2 feature matching loss
GE1ðÞ the first encoder network Encoder1 xbce the weight of LD bce

GE2ðÞ the second encoder network Encoder2 xrec the weight of LG l1

f DðÞ the intermediate layers of the discriminator component xen the weight of LG l2

f CðÞ the intermediate layers of the classifier component xcla the weight of LC ce

BCEðÞ the binary cross entropy (BCE) function xfm the weight of LC l2
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discriminator adversarial learning in the case of fixed network
parameters of the discriminator component. Formally, the BCE
function is used to calculate the distance LD bce between the dis-
criminator output vector (y0D) determined by generated images
and a real label vector (yD, filling real label 1) that is consistent
with the size of y0D. The parameter values of the generator compo-
nent are updated by minimizing the LD bceto get the generated
images that has same distribution of the real input images. The cal-
culation process of LD bceis defined as,

y0D ¼ D GðxÞ; sliceð Þ;

BCE y0D; yD
� � ¼� 1

n

X

i

yiD � log y0iD
� �

þ 1� yiD
� � � log 1� y0iD

� �
;

LD bce ¼ Ex�Pr BCE y0D; yD
� �� � ð4Þ

Reconstruction Loss. According to the work in [36], penalizing
the generator of GAN by measuring the distribution differences
between the input and the generated images can effectively
improve the quality of generated images. Moreover, it was shown
that the use of the L1distance yields less blurry images than L2.
Hence, the L1distance between the input 2D-brain feature images
and the generated images, as a reconstruction loss LG l1, is used
to penalize the generator component. LG l1is defined as,

LG l1 ¼ Ex�Pr jjx;GðxÞjj1; ð5Þ
Encoder Loss. As discussed above, this paper uses GAN-based

2D-brain feature image reconstruction for adding additional cate-
gory features to the original 2D-brain feature images, and uses
deep CNN networks to extract high-level brain features from the
generated brain feature images to complete the classification task
of the diseased state. To improve how Encoder2 learns to extract
brain features from the generated images for representing the
input images, an additional encoder loss (LG l2) is employed to
minimize the distance between the bottleneck features of the input
(Latent_i) and the extracted features of the generated image
(Latent_o). And LG l2is defined as:

Laten i ¼ GE1ðx; sliceÞ;
Latent o ¼ GE2ðGðxÞÞ;
LG l2 ¼ Ex�Pr jjLatent i; laten ojj2;

ð6Þ

Classification loss. This classification loss LC ce is based on the
current classifier parameters, which is obtained by comparing the
outputs of the classifier component (y0C) taking Latent_o as input
with the true category labels (yC) of the samples. The LC ce is cal-
culated by the multi-class cross entropy function:
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y0C ¼ C Latent oð Þ

LC ce ¼ �
XM�1

i¼0
yiC � log y0iC

� �
;

ð7Þ

where iis the i-th dimension of the yCand y0C .
Overall, the loss value LGof the generator component becomes

the following:

LG ¼ xbce �LD bce þxrec �LG l1 þxen �LG l2 þxcla �LC ce; ð8Þ
wherexbce;xrec;xenandxclaare the weighting parameters adjusting
the impact of individual losses to the overall loss value.

The parameter update strategy of the generator component is
given as following:

ParamG  �OLG ð9Þ
where Odenotes the gradient values of the LGto the corresponding
parameters.

(3) Classifier Component:
In this work, the loss of the classifier component is mainly com-

ing from two parts, the feature matching loss and the classification
loss. Each of these losses is now described.

Feature matching loss. We employ a feature matching loss
LC l2to reduce the instability of updating the parameters of the
classifier component.

Latent i ¼ GE1 x; sliceð Þ;
Latent o ¼ GE2 GðxÞð Þ;
LC l2 ¼ Ex�Prkf c Latent ið Þ � f c Latent oð Þk2;

ð10Þ

Classification loss. The classification lossLC ceof classifier com-
ponent is based on the supervised learning, which is calculated by
the multi-class cross entropy function and is:

y0C ¼ C Latent oð Þ

LC ce ¼ �
XM�1

i¼0
yiC � log y0iC

� � ð11Þ

where iis the i-th dimension of the yCand y0C .
Overall, the loss value LCof the generator component becomes

the following:

LC ¼ xcla �LC ce þxfm �LC l2; ð12Þ
where xcla;xfmare weighting parameters. The parameter update
strategy of the classifier component is given by:

ParamC  �OLC ; ð13Þ
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where O denotes the gradient values of the LCto the corresponding
parameters.

The pseudo code of complete training process is shown blow.

Algorithm1: Complete training process

Input: X ¼ x1; x2; � � � ; xnf g: source data; YD ¼ y1; y2; � � � ; ynf g:
the labels of real source data; G, D and C: BSGAN-ADD
model three components; GE1 and GE2: Encoder1 network
and Encoder2 network; hG , hD and hC: initial G network, D
network and C network parameters; �: Discriminator loss
threshold; f Dand f Care functions that represents the
intermediate layers of the discriminator component and
classifier component; xbce, xrec , xen, xcla and xfm:
weighting parameters.

1: while hGhas not converged: do
2: == Calculate Discriminator loss and update Discriminator
3: LD  f D x; sliceð Þ; f D G xð Þ; sliceð Þk k2
4: hD þ �OhD LDð Þ
5: == Calculate Generator loss and update Generator
6: y0D  DðGðxÞ; sliceÞ
7: LD bce  BCE yD; y

0
D

� �

8: LG l1  x;G xð Þk k1
9: Latent i GE1 x; sliceð Þ
10: Latent o GE2 G xð Þð Þ
11: LG l2  Latent i; Latent ok k2
12: LC ce  � log C Latent oð Þð Þ
13:

hG þ �OhG xbceLD bce þxrecLG l1 þxenLG l2 þxclaLC ceð Þ
14: == Calculate Classifier loss and update Classifier
15: LC l2  f C Latent ið Þ; f C Latent oð Þk k2
16: hC þ �OhC xfmLC l2 þxclaLC ce

� �

17: if LD < � then Initialize DðÞ
18: end if
19: end while
4. Experiments and Discussions

4.1. Evaluation metrics

The standard metrics were used to evaluate AD detection per-
formance. These metrics are defined using accuracy (ACC), sensi-
tivity (SEN) or recall, positive predictive value (PPV) or precision
and F1-score.

ACC ¼ TPþTN
TPþTNþFPþFN ;

SEN ¼ TP
TPþFN ;

PPV ¼ TP
TPþFP ;

F1 ¼ 2 � SEN�PPV
SENþPPV ;

ð14Þ

where TP is the number of true positive, and TN is the number of
false positive. Similarly, let FP and FN denote true negative and false
negative respectively. In addition, the classification performance
was evaluated by the area under the receiver operating characteris-
tic (ROC) curve (AUC). The abscissa of the ROC curve is false positive
rate (FPR), and the ordinate is true positive rate (TPR).

TPR ¼ TP
TPþFN ;

FPR ¼ FP
FPþTN ;

ð15Þ
4.2. Performance comparison

(1) Non GAN-based Model Performance Comparison.
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We evaluated the detection performance (classification accu-
racy) of the proposed Alzheimer’s disease detection model
(BSGAN-ADD) and several typical Alzheimer’s disease detection
models for each specific classification task. The experiment results
are shown in Table 3. Through the experiments on two datasets,
our BSGAN-ADD exhibits improvements over all competing meth-
ods on four different classification tasks (NL/AD/MCI classification
task, NL/AD classification task, NL/MCI classification task and AD/
MCI classification task). Moreover, the deep learning-based models
(Li et al. [37], Hosseini-Asl et al. [19], Suk et al. [17], Wang et al.
[38], Feng et al.[39], Emtiaz et al.[40], our BSGAN-ADD) have better
performance than traditional classification models (Magnin et al.
[41], Ben Ahmed et al. [42]) because of their good model expres-
siveness brought by deep structures. In deep learning methods,
according to compare the parameters of model, the computational
cost of proposed model is also at a low level.

Meanwhile, BSGAN-ADD has the highest accuracy in the AD/
MCI and NL/MCI classification tasks, which verifies our AD detec-
tion model can identify MCI samples, thus to perform the early
diagnosis of AD more effectively.

The proposed BSGAN-ADD model was further compared with
four neural network-based methods (AlexNet3D [24], multi-CNN-
3D [37], AutoEncoder-3D [17], AutoEncoder CNN-3D [19]) with
respect to different proportion of training data. Specifically, we
randomly chose 90% of samples as the training set (varied from
55% to 90% with a step size of 10%) and kept the remaining 10%
for testing in each round. The changes of different evaluation met-
ric values are shown in Fig. 7–9. Specifically, Fig. 7–8, show the
value changes of PPV, SEN and F1 on Normal, AD, MCI group of
testing data respectively. Fig. 9 shows the value changes of ACC
and training loss of different AD detection methods.

It was shown (for example, Table 3) that the proposed AD detec-
tion model (BSGAN-ADD) outperformed the other detection meth-
ods on the third classification task (Normal vs AD vs MCI) with any
percentage of the training data. It can also be found that as the pro-
portion of training data increased, the proposed model improved
the classification performance. Furthermore, the experimental
results showed that the proposed model still had high classifica-
tion accuracy with a small number of training samples.

(2) GAN-based Model Performance Comparison We discussed
further the performance of AD detection models based on different
GAN structures. Nine different GAN-based AD detection models
were proposed to solve the binary AD classification problem (Nor-
mal vs AD). Specifically, four different state-of-the-art GAN struc-
tures DCGAN [43], WGAN [44], Conditional-GAN [45] and AEGAN
[46], were used to construct AD detection models. For each GAN
category, AD detection models were further divided into three
sub-categories supervised learning-based AD detection model
(SL); unsupervised learning-based AD detection model (USL); and
three component adversarial AD detection model (TCA).

Compared the different kinds of GAN-based AD detection mod-
els mentioned above with the proposed Alzheimer’s disease detec-
tion model (BSGAN-ADD) to analyze the effect of different GAN
structures on AD detection performance. In Table 4, the class-
wise classification performances of AD detection models based
on different GAN structures are provided. From Table 4, five con-
clusions can be made.

(1) Compared with the direct use of GAN to measure the distri-
bution gap between Normal and AD samples, it can be seen
that GAN as a high-level brain feature extraction tool to gen-
erate latent features and feed them to the DNN-based classi-
fier for supervised learning has better performance in this
classification problem (Normal vs AD).



Table 3
Performance of the BSGAN-ADD on four classification tasks.

Approach Modalities NL/AD/MCI NL/AD NL/MCI AD/MCI Parameters

Magnin et al.[41] MRI - 0.902 - -
Ben Ahmed et al.[42] MRI - 0.854 0.722 0.663
Khvostikov et al.[24] PET + MRI 0.852 0.885 0.877 0.831 0.17 M
Li et al.[37] MRI 0.867 0.907 0.893 0.848 4.51 M
Korolev et al.[22] MRI - 0.823 0.782 0.751 2.14 M
Hosseini-Asl et al.[19] MRI 0.824 0.972 0.968 0.867 457.0 M
Suk et al.[17] PET + MRI 0.915 0.942 0.936 0.912 0.7 M
Wang et al.[38] MRI 0.975 0.988 0.984 0.936 5.3 M
Feng et al.[39] MRI 0.957 0.991 0.989 0.894 221.5 M
Emtiaz et al.[40] MRI - 0.978 - - 2.0 M
BSGAN-ADD model(ADNI) MRI 0.986 1.000 0.994 0.979 2.7 M
BSGAN-ADD model(OASIS) MRI 0.983 0.998 0.991 0.981 2.7 M

Fig. 7. The value changes of PPV, SEN and F1 on Normal group of testing data when the proportion of training data varied from 55% to 90%.
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(2) By comparing the performance differences between the
DCGAN-based and the Conditional-GAN-based AD detection
model, it can be found that integrating the slice location
information into the GAN-based AD detection model will
improve the accuracy of classification model.

(3) By comparing the performance differences between the
encoder-decoder GAN-based SL AD detection model and
three-component adversarial AEGAN-based AD detection
model, it was shown that adding classification loss into the
loss calculation process of generator will help the model to
extract more representative latent features.

(4) By comparing the performance differences between the
DCGAN-based and the WGAN-based detection model, it
shows that using different distance functions to measure
the distribution gap between generated data and real data
not significantly improves the classification performance.

(5) By comparing the performance differences between the pro-
posed model which no Encoder2, no Encoder loss and no
Classification loss respectively, it shows that Encoder2can
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significantly improve the performance of the model and
Encoder loss and Classification loss can guide the model to
better extract high-quality latent features. The proposed
AD detection model (BSGAN-ADD) performs the category
enhancement of brain slice images by integrating the classi-
fier’s feedbacks to the input 2D-brain feature image recon-
struction process. The high-level brain features extracted
from the category-enhanced brain slice images will be easier
to correctly classify by the classifier, resulting in the BSGAN-
ADD having better performance compared with competing
GAN-based AD detection models.

4.3. Model performance

(1) Performances of the BSGAN-ADD:
The proposed Alzheimer’s disease detection model (BSGAN-

ADD) was applied to four specific classification tasks (three binary
classifications and one ternary classification). The output of the
BSGAN-ADD of the inference process is the NL/AD/MCI classifica-



Fig. 8. The value changes of PPV, SEN and F1 on MCI group of testing data when the proportion of training data varied from 55% to 90%.

Fig. 9. The value changes of ACC and classification loss of different methods when the proportion of training data varied from 55% to 90%.

Table 4
The Class-wise classification performances of different GAN-based AD detection models [Meanstd].

Approach PPV NL/AD SEN F1

DCGAN-SL 0:6150:120 0:5780:128 0:5960:05

DCGAN-USL 0:5500:02 0:5620:413 0:5570:238

WGAN-SL 0:7050:124 0:6150:120 0:6650:08

WGAN-USL 0:5450:04 0:5360:369 0:5410:192

Conditional-GAN-SL 0:7180:07 0:7120:057 0:7150:03

Conditional-GAN-USL 0:7080:099 0:6850:289 0:6970:113

AEGAN-SL 0:8520:112 0:9080:085 0:8750:02

AEGAN-USL 0:7390:079 0:7270:151 0:7340:092

AEGAN-TCA 0:9080:061 0:9250:042 0:9180:014

Our Approach(No Encoder2) 0:6720:109 0:6250:211 0:6470:150

Our Approach(No Encoder loss) 0:9320:026 0:9510:020 0:9430:015

Our Approach(No Classification loss) 0:9270:063 0:9250:032 0:9260:038

Our Approach(ADNI) 1:000 1:000 1:000

Our Approach(OASIS) 1:000 0:9970:001 0:9980:001
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Table 5
Performance of the BSGAN-ADD on four classification tasks.

NL/AD/MCI NL/AD NL/MCI AD/MCI

Class PPV SEN F1 PPV SEN F1 PPV SEN F1 PPV SEN F1

Normal 0.982 0.997 0.991 1.000 1.000 1.000 0.989 0.996 0.993 - - -
AD 0.972 0.987 0.980 1.000 1.000 1.000 - - - 0.954 0.991 0.973
MCI 0.993 0.981 0.987 - - - 0.997 0.992 0.995 0.997 0.971 0.987
Mean 0.982 0.988 0.986 1.000 1.000 1.000 0.993 0.994 0.994 0.975 0.981 0.980

Fig. 11. The ROCs/ AUCs of four classification tasks from a single slice perspective.

Fig. 10. The upper 16 images were the pixel-wise average images of 10 normal people on the corresponding slices, and the lower 16 images were the pixel-wise average
images of 10 AD patients on the corresponding slices.
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Fig. 12. The training loss curves of the three components (generator, discriminator and classifier) in BSGAN-ADD.

Fig. 13. The MMD values between the real images and the generated images across
training iterations.
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tion label of a PNG along the Z axis, and an MRI 3D data of a sample
contains about 16 labels. The proposed model gives a diagnostic
result for a specific sample base on the dominated AD predication
labels of images along the Z axis. The detail class-wise experimen-
tal results were evaluated and the results shown in Table 5.
Fig. 14. The t-SNE projection-based feature
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The ROCs/ AUCs of these classification tasks from a single slice
(2D-brain slice image) perspective are shown in Fig. 11, and these
results indicate that the proposed Alzheimer’s disease detection
model has great classification performance and make the AD
detection tasks effectively.

From the results shown in Table 5 and Fig. 11, our BSGAN-ADD
model obtains perfect results in the NL/AD two-category classifica-
tion task. Excluding the factor of the limited test data, we believe
that brain slice image enhancement achieved by the GAN-based
image reconstruction helps the model gain the classification per-
formance improvement. Using GAN-based approach to enhance
the input 2D-brain slice images has three main advantages: 1)
Stronger explicability of the high-level brain feature extraction
process. As shown in Fig. 10, the generator can reconstruct the
input brain images with an encoder-decoder structure, which
shows that the model can effectively capture the pixel-wise distri-
bution of brain slice images, and brain slice images can be well rep-
resented by the high-level brain features extracted by the encoder.
2) Stronger model expressiveness. Compared with the traditional
CNN-based AD detection model, the proposed model learns how to
perform image feature enhancement on the input brain feature
images by integrating the disease category information to brain
feature image reconstruction process. It can be observed in
Fig. 10 that the pseudo 2D-brain feature images of normal people
generated by the BSGAN-ADD were significantly different from
those of AD patients, and the image differences were even greater
than that between real images. Therefore, the controllable feature
space of model can be extended from the extracted high-level
visualizations of Latent_i and Latent_o.



Fig. 16. The t-SNE projection-based visualizations of outputs of DNN-based
classifier.
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brain feature space to contain the input brain slice image space,
which greatly improves the model expressiveness. 3) Stronger
model robustness. According to [47], reconstructing the input
data through adversarial training can effectively eliminate the
influence of the trivial perturbations of the input data, and it allows
us to navigate and manipulate the manifold of images.

Fig. 12 shows the training loss curves of the three components
(generator, discriminator and classifier) in the BSGAN-ADD for the
ternary classification problem (Normal vs AD vs MCI). As can be
seen from Fig. 12, the proposed Alzheimer’s disease detection mod-
el’s components (generator, discriminator and classifier) can con-
verge to low training loss values with the increase of training
iteration number. In other words, Fig. 12 illustrates that the opti-
mal model parameters can be obtained steadily using the model
training strategy described in Section 3.5. To better illustrate that
the generator of the BSGAN-ADD can output realistic 2D-brain fea-
ture images that have same data distribution with the input 2D-
brain feature images, the maximum mean discrepancy (MMD)
[48] was used to evaluate whether the proposed model had
learned the data distributions of the input 2D-brain feature images.
MMD is given by:

MMDðInput;GeneratedÞ¼ 1
nðn�1Þ

Xn

i¼1

Xn

j–i

KðInputi;GeneratedjÞ

þ 1
mðm�1Þ

Xm

i¼1

Xm

j–i

KðGeneratedi;GeneratedjÞ

� 2
mn

Xm

i¼1

Xm

j–i

KðInputi;GeneratedjÞ;

ð16Þ
The MMD values between the generated 2D-brain feature

images and real images are plotted in Fig. 13 across training
iterations.

According to Fig. 13, the MMD values tend to converge to a
small value after 40 iterations. It can be concluded that the gener-
ator component in the proposed model can generate the pseudo-
brain feature image similar to the input images, in other words,
the proposed model can effectively learn the distributions of the
original input 2D-brain feature images.

(2) Discussions of the BSGAN-ADD:
To verify that the high-level latent features (Latent_o) extracted

from the pseudo 2D-brain feature images generated from the gen-
erator component are more advantageous for classifier to distin-
guish the diseased states than the highlevel latent features
(Latent_i) extracted directly from the input 2D-brain feature
images. For this, we plotted the t-SNE projection-based feature
Fig. 15. The t-SNE projection-based visualizations
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visualizations of the extracted high-level latent features and the
visualizations of Latent_i and Latent_o are shown in Fig. 14. From
Fig. 14, when we used Latent_i to represent the brain slices belong-
ing to different diseased categories (Normal/AD/MCI) in low-
dimensional latent space, there is almost no clear boundary
between the data points of different diseased categories (the data
points in red, blue and green colors belong to different categories).
While using Latent_o to represent brain slice images is prone to
map brain slice images of different disease categories to different
regions in low-dimensional latent space, which is easier for classi-
fier to determine the disease category.

In order to show more clearly that it can make AD detection
more effective by using the high-level latent features (Latent_o)
extracted by deep CNNs from the generated 2D-brain feature
images to represent the input 2D-brain feature images. The
Latent_o and Latent_i were regarded as the brain slice image repre-
sentations to train two independent SVM classifiers for the ternary
classification task (Normal vs AD vs MCI) respectively. The visual-
ization of the two linear classifiers’ outputs is shown in Fig. 15. As
shown in Fig. 15, the SVM classifier that takes Latent_o as input has
better classification performance to accurately detect the diseased
state. Moreover, it demonstrates to some extent that extracting
high-level brain features from the category-enhanced brain images
has substantial advantages over the traditional CNN-based extrac-
tion approaches that directly extract high-level brain features from
of SVM with Latent_i and Latent_o as inputs.



Fig. 17. The MMD values between Latent_i and Latent_o across training iterations.
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the original brain feature images. We also plotted t-SNE projection-
based visualization of the outputs of DNN-based classifier in the
proposed Alzheimer’s disease detection model. And it was shown
in Fig. 16. These visualization results in Fig. 16 show that the
DNN-based non-linear classifier has better classification perfor-
mance in AD detection tasks than the linear classifier (SVM).

To further confirm the feasibility of our BSGAN-ADD model, we
plotted that the MMD values between the high-level latent fea-
tures (Latent_i) extracted from the input 2D-brain feature images
and the high-level latent features (Latent_o) extracted from the
generated 2D-brain feature images generated by the generator
component. Fig. 17 shows that the MMD values between Latent_i
and Latent_o can converge to a small value after about 100 training
iterations. It proves that the extracted high-level features (Latent
o) from the pseudo 2D-brain feature images have the same data
distribution as the high-level latent features (Latent_i) directly
extracted from the input 2D-brain feature images, so it is feasible
represent the input 2D-brain feature images by Latent_o.
5. Conclusion

In this work, a novel feature-based and deep learning-based
Alzheimer’s disease detection (ADD) model (brain slice generative
adversarial network for Alzheimer’s disease detection, BSGAN-
ADD) was proposed to perform computer-aided-diagnosis (CAD)
of AD and its prodromal stage, Mild Cognitive Impairment, (MCI).
In BSGAN-ADD, three components generator, discriminator and
classifier compete in a three-player mini-max game. Performing
the GAN-based brain slice image enhancement and the stacked
CNN layers-based high-level brain feature extraction, to feed more
representative brain features into DNN-based classifier to output
the posterior probabilities of three diseased categories Normal,
AD and MCI. Compared with several typical AD detection methods,
our method showed a significant detection performance gain on
two real-world datasets (ADNI, OASIS).
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